Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Immunol ; 200(5): 1593-1606, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29358273

RESUMO

The inhibitors of apoptosis (IAP) proteins, initially described in the context of apoptosis regulation as promoting cell survival, have recently emerged as key regulators of innate immune signaling. As a result, downregulation of IAP via Smac mimetics (SMM) has both survival and immunoregulatory effects. IAPs modulate cytokine production in murine models either as a single agent or in response to LPS. However, the role of SMM and the involvement of IAPs in primary human cells and in particular macrophages with respect to cytokine production and innate immune responses remain largely unknown. IL-27, a member of the IL-12 cytokine family produced by APCs such as macrophages, has broad immunoregulatory properties in both innate and adaptive immune responses. Herein, we show that cellular IAPs (cIAPs) positively regulate LPS-induced IL-27 production in both primary human monocytes and macrophages. Investigations for the signaling mechanism of cIAPs involvement in IL-27 production in human macrophages revealed that LPS-induced IL-27 production is regulated by a novel signaling complex comprising cIAP1/2, TNFR-associated factor 2 (TRAF2), SHP-1, Src, and MyD88 leading to p38, c-Jun N-terminal kinases (JNK) and Akt activation and NF-κB signaling. In cancer cells, SMM induce the production of cytokines by activating the noncanonical alternate NF-κB pathway. However, in human macrophages, SMM do not induce the production of TNF-α and other cytokines while inhibiting LPS-induced IL-27 production by inhibiting the classical NF-κB pathway. These signaling pathways may constitute novel therapeutic avenues for immune modulation of IL-27 and provide insight into the modulatory immune effects of SMM.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/imunologia , Interleucinas/imunologia , Lipopolissacarídeos/imunologia , NF-kappa B/imunologia , Transdução de Sinais/imunologia , Imunidade Adaptativa/imunologia , Proteína 3 com Repetições IAP de Baculovírus/imunologia , Células Cultivadas , Regulação da Expressão Gênica/imunologia , Humanos , Imunidade Inata/imunologia , Proteínas Inibidoras de Apoptose/imunologia , Macrófagos/imunologia , Monócitos/imunologia , Fator 88 de Diferenciação Mieloide/imunologia , Proteína Tirosina Fosfatase não Receptora Tipo 6/imunologia , Proteínas Proto-Oncogênicas pp60(c-src)/imunologia , Fator 2 Associado a Receptor de TNF/imunologia , Fator de Necrose Tumoral alfa/imunologia
2.
J Leukoc Biol ; 102(3): 925-939, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28698313

RESUMO

Monocyte-derived Mϕs (MDMs) from HIV-infected patients and MDM infected in vitro with HIV exhibit a reduced ability to secrete various cytokines, including IL-12. Recently, IL-27, an IL-12 family cytokine, was shown to inhibit HIV replication in Mϕ. Whether HIV infection or HIV accessory protein(s) impact IL-27 production in Mϕs remains unknown. Herein, we show that in vitro HIV infection, as well as intracellular HIV-Tat (Tat) and Tat peptides, inhibit LPS-induced IL-27 production in human MDMs, suggesting impairment of the TLR4 signaling pathway. To understand the signaling pathways governing HIV or Tat-mediated inhibition of LPS-induced IL-27 production, we first demonstrated that p38 MAPK, PI3K, Src-homology region 2 domain-containing tyrosine phosphatase 1 (SHP-1), and Src kinases regulate LPS-induced IL-27 production in MDMs. Tat caused down-regulation of TNFR-associated factor (TRAF)-6 and inhibitor of apoptosis 1 (cIAP-1) and subsequently decreased phosphorylation of downstream PI3K and p38 MAPKs, which were implicated in LPS-induced IL-27 production. Whereas SHP-1 and Src kinases regulated LPS-induced IL-27 production, Tat did not inhibit these kinases, suggesting that they were not involved in Tat-mediated inhibition of LPS-induced IL-27 production. In contrast to Tat, in vitro HIV infection of MDM inhibited LPS-induced IL-27 production via inhibition of p38 MAPK activation. Overall, HIV and Tat inhibit LPS-induced IL-27 production in human macrophages via distinct mechanisms: Tat through the inhibition of cIAP-1-TRAF-6 and subsequent inhibition of PI3K and p38 MAPKs, whereas HIV through the inhibition of p38 MAPK activation.


Assuntos
Infecções por HIV/imunologia , HIV-1/imunologia , Interleucinas/imunologia , Lipopolissacarídeos/farmacologia , Macrófagos/imunologia , Produtos do Gene tat do Vírus da Imunodeficiência Humana/imunologia , Humanos , Proteínas Inibidoras de Apoptose/imunologia , Peptídeos e Proteínas de Sinalização Intracelular , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/imunologia , Fosfatidilinositol 3-Quinases/imunologia , Proteína Tirosina Fosfatase não Receptora Tipo 6/imunologia , Fator 6 Associado a Receptor de TNF/imunologia , Proteínas Quinases p38 Ativadas por Mitógeno/imunologia
3.
Nat Chem Biol ; 11(12): 988-93, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26479438

RESUMO

Immune regulation of cellular metabolism can be responsible for successful responses to invading pathogens. Viruses alter their hosts' cellular metabolism to facilitate infection. Conversely, the innate antiviral responses of mammalian cells target these metabolic pathways to restrict viral propagation. We identified miR-130b and miR-185 as hepatic microRNAs (miRNAs) whose expression is stimulated by 25-hydroxycholesterol (25-HC), an antiviral oxysterol secreted by interferon-stimulated macrophages and dendritic cells, during hepatitis C virus (HCV) infection. However, 25-HC only directly stimulated miR-185 expression, whereas HCV regulated miR-130b expression. Independently, miR-130b and miR-185 inhibited HCV infection. In particular, miR-185 significantly restricted host metabolic pathways crucial to the HCV life cycle. Interestingly, HCV infection decreased miR-185 and miR-130b levels to promote lipid accumulation and counteract 25-HC's antiviral effect. Furthermore, miR-185 can inhibit other viruses through the regulation of immunometabolic pathways. These data establish these microRNAs as a key link between innate defenses and metabolism in the liver.


Assuntos
Hepatite C/imunologia , Hepatite C/metabolismo , Fígado/imunologia , Fígado/metabolismo , MicroRNAs/metabolismo , Antivirais/metabolismo , Antivirais/farmacologia , Linhagem Celular , Hepacivirus/efeitos dos fármacos , Hepatite C/tratamento farmacológico , Humanos , Hidroxicolesteróis/farmacologia , Fígado/efeitos dos fármacos , Fígado/virologia , MicroRNAs/genética , Conformação Molecular
4.
Biochem Biophys Res Commun ; 463(4): 1135-40, 2015 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-26079891

RESUMO

RNA silencing is a gene regulatory and host defense mechanism whereby small RNA molecules are engaged by Argonaute (AGO) proteins, which facilitate gene knockdown of complementary mRNA targets. Small molecule inhibitors of AGO represent a convenient method for reversing this effect and have applications in human therapy and biotechnology. Viral suppressors of RNA silencing, such as p19, can also be used to suppress the pathway. Here we assess the compatibility of these two approaches, by examining whether synthetic inhibitors of AGO would inhibit p19-siRNA interactions. We observe that aurintricarboxylic acid (ATA) is a potent inhibitor of p19's ability to bind siRNA (IC50 = 0.43 µM), oxidopamine does not inhibit p19:siRNA interactions, and suramin is a mild inhibitor of p19:siRNA interactions (IC50 = 430 µM). We observe that p19 and suramin are compatible inhibitors of RNA silencing in human hepatoma cells. Our data suggests that at least some inhibitors of AGO may be used in combination with p19 to inhibit RNA silencing at different points in the pathway.


Assuntos
Proteínas Argonautas/genética , Interferência de RNA , Linhagem Celular Tumoral , Humanos , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Suramina/farmacologia
5.
ACS Infect Dis ; 1(3): 130-4, 2015 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-27622463

RESUMO

Many viruses including the hepatitis C virus (HCV) induce changes to the infected host cell metabolism that include the up-regulation of lipogenesis to create a favorable environment for the virus to propagate. The enzyme acetyl-CoA carboxylase (ACC) polymerizes to form a supramolecular complex that catalyzes the rate-limiting step of de novo lipogenesis. The small molecule natural product Soraphen A (SorA) acts as a nanomolar inhibitor of acetyl-CoA carboxylase activity through disruption of the formation of long highly active ACC polymers from less active ACC dimers. We have shown that SorA inhibits HCV replication in HCV cell culture models expressing subgenomic and full-length replicons (IC50 = 5 nM) as well as a cell culture adapted virus. Using coherent anti-Stokes Raman scattering (CARS) microscopy, we have shown that SorA lowers the total cellular lipid volume in hepatoma cells, consistent with a reduction in de novo lipogenesis. Furthermore, SorA treatment was found to depolymerize the ACC complexes into less active dimers. Taken together, our results suggest that SorA treatment reverses HCV-induced lipid accumulation and demonstrate that SorA is a valuable probe to study the roles of ACC polymerization and enzymatic activity in viral pathogenesis.

6.
Sci Rep ; 4: 4549, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25008545

RESUMO

Hepatitis C virus (HCV) replication is dependent on the formation of specialized membrane structures; however, the host factor requirements for the formation of these HCV complexes remain unclear. Herein, we demonstrate that inhibition of stearoyl-CoA desaturase 1 (SCD-1) halts the biosynthesis of unsaturated fatty acids, such as oleic acid, and negatively modulates HCV replication. Unsaturated fatty acids play key roles in membrane curvature and fluidity. Mechanistically, we demonstrate that SCD-1 inhibition disrupts the integrity of membranous HCV replication complexes and renders HCV RNA susceptible to nuclease-mediated degradation. Our work establishes a novel function for unsaturated fatty acids in HCV replication.


Assuntos
Hepacivirus/metabolismo , Membranas/metabolismo , Membranas/virologia , Estearoil-CoA Dessaturase/antagonistas & inibidores , Linhagem Celular Tumoral , Ácidos Graxos Insaturados/metabolismo , Hepacivirus/efeitos dos fármacos , Humanos , Membranas/efeitos dos fármacos , Estearoil-CoA Dessaturase/metabolismo , Replicação Viral/efeitos dos fármacos
7.
Chembiochem ; 15(9): 1253-6, 2014 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-24850173

RESUMO

Phosphatidylinositol kinases (PIKs) are key enzymatic regulators of membrane phospholipids and membrane environments that control many aspects of cellular function, from signal transduction to secretion, through the Golgi apparatus. Here, we have developed a photoreactive "clickable" probe, PIK-BPyne, to report the activity of PIKs. We investigated the selectivity and efficiency of the probe to both inhibit and label PIKs, and we compared PIK-BPyne to a wortmannin activity-based probe also known to target PIKs. We found that PIK-BPyne can act as an effective in situ activity-based probe, and for the first time, report changes in PI4K-IIIß activity induced by the hepatitis C virus. These results establish the utility of PIK-BPyne for activity-based protein profiling studies of PIK function in native biological systems.


Assuntos
Alcinos/farmacologia , Benzofenonas/farmacologia , Corantes Fluorescentes/farmacologia , Fosfotransferases (Aceptor do Grupo Álcool)/antagonistas & inibidores , Alcinos/química , Benzofenonas/química , Relação Dose-Resposta a Droga , Ativação Enzimática/efeitos dos fármacos , Corantes Fluorescentes/química , Células HEK293 , Humanos , Estrutura Molecular , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Relação Estrutura-Atividade
8.
Hepatology ; 59(1): 98-108, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23897856

RESUMO

UNLABELLED: MicroRNAs (miRNAs) are small RNAs that posttranscriptionally regulate gene expression. Their aberrant expression is commonly linked with diseased states, including hepatitis C virus (HCV) infection. Herein, we demonstrate that HCV replication induces the expression of miR-27 in cell culture and in vivo HCV infectious models. Overexpression of the HCV proteins core and NS4B independently activates miR-27 expression. Furthermore, we establish that miR-27 overexpression in hepatocytes results in larger and more abundant lipid droplets, as observed by coherent anti-Stokes Raman scattering (CARS) microscopy. This hepatic lipid droplet accumulation coincides with miR-27b's repression of peroxisome proliferator-activated receptor (PPAR)-α and angiopoietin-like protein 3 (ANGPTL3), known regulators of triglyceride homeostasis. We further demonstrate that treatment with a PPAR-α agonist, bezafibrate, is able to reverse the miR-27b-induced lipid accumulation in Huh7 cells. This miR-27b-mediated repression of PPAR-α signaling represents a novel mechanism of HCV-induced hepatic steatosis. This link was further demonstrated in vivo through the correlation between miR-27b expression levels and hepatic lipid accumulation in HCV-infected SCID-beige/Alb-uPa mice. CONCLUSION: Collectively, our results highlight HCV's up-regulation of miR-27 expression as a novel mechanism contributing to the development of hepatic steatosis.


Assuntos
Fígado Gorduroso/etiologia , Hepacivirus/fisiologia , Hepatite C/complicações , MicroRNAs/metabolismo , Animais , Bezafibrato , Linhagem Celular Tumoral , Hepatite C/metabolismo , Hepatite C/virologia , Homeostase , Humanos , Metabolismo dos Lipídeos , Fígado/metabolismo , Camundongos , Camundongos SCID , PPAR alfa/agonistas , Regulação para Cima
9.
Int J Hyg Environ Health ; 215(5): 522-35, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22608759

RESUMO

The general public receives approximately half of its exposure to natural radiation through alpha (α)-particles from radon ((222)Rn) gas and its decay progeny. Epidemiological studies have found a positive correlation between exposure to (222)Rn and lung carcinogenesis. An understanding of the transcriptional responses involved in these effects remains limited. In this study, genomic technology was employed to mine for subtle changes in gene expression that may be representative of an altered physiological state. Human lung epithelial cells were exposed to 0, 0.03, 0.3 and 0.9Gy of α-particle radiation. Microarray analysis was employed to determine transcript expression levels 4h and 24h after exposure. A total of 590 genes were shown to be differentially expressed in the α-particle radiated samples (false discovery rate (FDR)≤0.05). Sub-set of these transcripts were time-responsive, dose-responsive and both time- and dose-responsive. Pathway analysis showed functions related to cell cycle arrest, and DNA replication, recombination and repair (FDR≤0.05). The canonical pathways associated with these genes were in relation to pyrimidine metabolism, G2/M damage checkpoint regulation and p53 signaling (FDR≤0.05). Overall, this gene expression profile suggests that α-particle radiation inhibits DNA synthesis and subsequent mitosis, and causes cell cycle arrest.


Assuntos
Partículas alfa , Células Epiteliais/efeitos da radiação , Perfilação da Expressão Gênica , Linhagem Celular Tumoral , Células Epiteliais/metabolismo , Humanos , Pulmão/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...